The classes of bounded harmonic functions and harmonic functions with finite Dirichlet integrals on hyperbolic Riemann surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic functions on hyperbolic graphs

We consider admissible random walks on hyperbolic graphs. For a given harmonic function on such a graph, we prove that asymptotic properties of non-tangential boundedness and non-tangential convergence are almost everywhere equivalent. The proof is inspired by the works of F. Mouton in the cases of Riemannian manifolds of pinched negative curvature and infinite trees. It involves geometric and ...

متن کامل

Rough Isometries and Dirichlet Finite Harmonic Functions on Graphs

Suppose that G\ and G% are roughly isometric connected graphs of bounded degree. If G\ has no nonconstant Dirichlet finite harmonic functions, then neither has Gi.

متن کامل

Surface Integrals and Harmonic Functions

Wu showed in [4] that for a positive harmonic function in the unit disc, one has in most cases inequality, while equality occurs for functions whose boundary measures are absolutely continuous. She also showed that there exists a nonzero lower bound of the lim inf for this class of functions in the disc. The bound is achieved for functions whose boundary measures, for example, are purely singul...

متن کامل

Harmonic morphisms onto Riemann surfaces and generalized analytic functions

© Annales de l’institut Fourier, 1987, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

Invariant Percolation and Harmonic Dirichlet Functions

The main goal of this paper is to answer question 1.10 and settle conjecture 1.11 of BenjaminiLyons-Schramm [BLS99] relating harmonic Dirichlet functions on a graph to those on the infinite clusters in the uniqueness phase of Bernoulli percolation. We extend the result to more general invariant percolations, including the Random-Cluster model. We prove the existence of the nonuniqueness phase f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 2010

ISSN: 0386-5991

DOI: 10.2996/kmj/1278076339